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Abstract

Video Virtual Try-on aims to seamlessly transfer a refer-
ence garment onto a target person in a video while pre-
serving both visual fidelity and temporal coherence. Ex-
isting methods typically rely on inpainting masks to de-
fine the try-on area, enabling accurate garment transfer
for simple scenes (e.g., in-shop videos). However, these
mask-based approaches struggle with complex real-world
scenarios, as overly large and inconsistent masks often
destroy spatial-temporal information, leading to distorted
results. Mask-free methods alleviate this issue but face
challenges in accurately determining the try-on area, espe-
cially for videos with dynamic body movements. To address
these limitations, we propose PEMF-VTO, a novel Point-
Enhanced Mask-Free Video Virtual Try-On framework that
leverages sparse point alignments to explicitly guide gar-
ment transfer. Our key innovation is the introduction of
point-enhanced guidance, which provides flexible and re-
liable control over both spatial-level garment transfer and
temporal-level video coherence. Specifically, we design a
Point-Enhanced Transformer (PET) with two core compo-
nents: Point-Enhanced Spatial Attention (PSA), which uses
frame-cloth point alignments to precisely guide garment
transfer, and Point-Enhanced Temporal Attention (PTA),
which leverages frame-frame point correspondences to en-
hance temporal coherence and ensure smooth transitions
across frames. Extensive experiments demonstrate that our
PEMF-VTO outperforms state-of-the-art methods, generat-
ing more natural, coherent, and visually appealing try-on
videos, particularly for challenging in-the-wild scenarios.

1. Introduction
Video Virtual Try-On, which aims to transfer the provided
garment into a specific area in the source person video while
maintaining the inter-frame coherence, has garnered signif-
icant attention especially for the E-Commerce and fashion
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design fields. This technology greatly reduces related costs
and brings more convenient shopping and work experience
to consumers and fashion designers.

Recently, based on powerful diffusion models [26, 37,
43, 54] and existing image virtual try-on training paradigm
[7, 30, 38, 51, 52, 61], many video virtual try-on methods
[15, 24, 47, 49, 58] have been proposed to take advantage of
the inpainting mask to ensure the try-on area and the tem-
poral attention module to keep the video coherence, obtain-
ing natural and impressive try-on results on simple in-shop
videos. However, in realistic scenarios, person videos often
exhibit complex body movements and significant scene mo-
tion (e.g., street dance videos). The pre-acquired agnostic
mask of such challenging videos will lead to 1) the loss of
spatial information on human postures and 2) temporal in-
consistency in try-on areas between adjacent frames, caus-
ing mask-based methods to generate distorted and incoher-
ent try-on video, as Fig. 1 shown. Therefore, to learn a more
general video virtual try-on model, it is necessary to design
a more reasonable framework to eliminate the inherent de-
ficiencies of mask-based try-on methods.

In the image virtual try-on area, several attempts have
been made to alleviate the negative impact of the inpaint-
ing mask by either 1) correcting the initial inaccurate ag-
nostic mask [51, 56] or 2) constructing the large-scale
paired training data to learn a mask-free try-on model
[16, 23, 39, 57]. However, the correlation of the agnos-
tic mask does not eliminate the dependencies of the mask
guidance. In addition, as Fig. 1 shows, directly transfer-
ring the mask-free paradigm to a video virtual try-on task
will bring confusing inconsistencies between reference gar-
ments and generated video frames. The core reason is that
person video data contain more complex actions or move-
ments at the temporal level, compared to image data. Based
on the above analysis, it is necessary to design an innovative
video virtual try-on paradigm that can avoid the deficien-
cies of agnostic masks while providing explicit and flexible
guidance on the specific garment try-on area.

In this work, we propose a novel Point-Enhanced
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Figure 1. Comparison of three virtual try-on paradigms. Rows from top to bottom denote the (a) image try-on results in the wild, (b) video
try-on results in the shop and (c) video try-on results in the wild. The testing data are respectively from open-sourced StreetVTON [10],
ViViD [15] and TikTok [29] datasets. Best viewed with Acrobat Reader. Click the images to play the video clips.

Mask-Free Video virtual Try-On (PEMF-VTO) frame-
work, which exploits the sparse frame-cloth and frame-
frame point alignments to explicitly guide the desirable try-
on area while enhancing the coherence of the generated
try-on video. Specifically, we first leverage the pre-trained
mask-based try-on method ViViD [15] to construct large-
scale paired data, thus learning a mask-free virtual try-on
model that eliminates the negative impact of the unreliable
agnostic mask. Inadequately, the pure mask-free model can
not determine the consistent and correct try-on area at the
temporal level, especially for realistic videos with diverse
body movements. To this end, we introduce sparse frame-
cloth and frame-frame correspondences (matching point
pairs) to enhance the consistency and coherence of gar-
ment transfer to source video. Concretely, a Point-enhanced
Spatial Attention (PSA) is designed to strengthen the gar-
ment transfer to a specific area. Besides, a Point-enhanced
Temporal Attention (PTA) is also proposed to increase the
coherence of the generated video. In this way, our PEMF-
VTO can simultaneously meet the three important and chal-
lenging requirements of the video virtual try-on task: 1) the
accurate transfer of reference garment 2) the preservation of
the non-try-on area and 3) the continuity of generated video
frames. Extensive qualitative and qualitative experiments
clearly show the effectiveness of our method.

Our contributions can be briefly summarized as follows:

• We investigate the deficiencies of current learning
paradigms in virtual try-on methods and propose a
more flexible and generalizable point-enhanced mask-
free paradigm compared to prior approaches.

• We design the Point-enhanced Spatial Attention (PSA)
module and the Point-enhanced Temporal Attention

(PTA) module to enhance the garment transfer ability and
temporal coherence of the generated try-on video.

• Extensive experiments illustrate that our method achieves
higher-quality and more coherent results for video virtual
try-on, especially in challenging in-the-wild scenarios.

2. Related Work

Image Virtual Try-On. Given a source person image and
a reference garment image, image virtual try-on aims to
synthesize an identity and background preserved and cloth
changed image. Previous methods [6, 13, 14, 16, 16, 21–
23, 46, 50, 53, 59] mainly leveraged Generative Adversarial
Networks (GANs) [17] to first warp the reference garment
to fit the person’s body and then transfer the deformed gar-
ment into the source person. However, the limited genera-
tional capacity of GANs significantly influences the quality
of try-on images for these GAN-based methods.

Recently, based on the amazing performance of diffusion
models in generating high-quality images at high resolu-
tions, many diffusion-based virtual try-on methods [1, 5, 7,
18, 30, 34, 60] have been proposed to generate natural and
realistic try-on images. For instance, StableVITON [30]
employed a ControlNet-like [54] encoder to ensure the fine-
grained garment transfer to person data. IDM-VTON [7]
designed a dual U-Net architecture to respectively encode
the person feature and cloth feature, then conducted the
cross attention between them to achieve high-quality gar-
ment transfer in wild realistic scenarios. While significant
progress has been made, these methods heavily depended
on the quality of the inpainting mask to determine the try-
on area. When evaluating more complex try-on data that
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Figure 2. The pipeline of our PEMF-VTO framework. It leverages the paired pseudo-person data ({xps}T1 , {xgt}T1 ) to train a mask-free
model, thereby avoiding the loss of spatial-temporal information in the try-on area. Besides, based on the pre-acquired alignments between
frame points {cx}T1 and garment points cg , a novel point-enhanced transformer is proposed to respectively improve the garment transfer
ability and coherence in the try-on area by the point-enhanced spatial attention and point-enhanced temporal attention modules.

contains diverse foreground occlusions and person poses,
they always fail to restore the non-try-on area.

To alleviate the above issue, TPD [51] and Betterfit [56]
proposed mask prediction or correlation modules to dy-
namically identify precise try-on areas. However, these
methods do not completely eliminate the dependencies of
the mask guidance. Furthermore, BooW-VTON [57] and
AnyDesign [39] adopted a mask-free virtual try-on train-
ing paradigm. Though achieving impressive progress, they
sometimes struggle to accurately identify try-on areas, espe-
cially when handling ambiguous or diverse clothing types.
Video Virtual Try-On. Recently, inspired by the training
paradigm of image virtual try-on, several diffusion-based
video virtual try-on methods have been proposed [15, 24,
47, 49, 58]. They utilized the inpainting mask to ensure
the try-on area and employed the temporal attention mod-
ule to ensure video coherence. However, these methods
suffer from more severe drawbacks of the mask-based train-
ing paradigm due to the increased complexity of video data.
Designing an effective and versatile video virtual try-on
paradigm remains both critical and challenging.

In contrast to the aforementioned mask-based paradigm,
we propose a point-enhanced mask-free video virtual try-on
method to simultaneously achieve: 1) precise control over
the try-on area, 2) accurate preservation of non-try-on re-
gions and 3) temporal coherence of video frames, thus syn-
thesizing more realistic and coherent virtual try-on videos.

3. The Approach

3.1. Preliminary

Stable Diffusion. Our PEMF-VTO leverages the Stable
Diffusion (SD) [41], one of the most widely applied gener-

ation models based on the Latent Diffusion Model (LDM).
LDM performs the denoising process in the latent space to
conduct a more effective image generation. Specifically, a
VAE encoder E(·) first converts the image x into a latent
embedding z0 = E(x). Then the forward diffusion process
is exploited by adding the noise to the latent embedding:

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I), (1)

where t ∈ {1, ..., T} represents the number of diffusion
timesteps and {ᾱi}ti=1 determines the diffusion schedule.
Finally, the denoising model is trained to predict the added
noise of the noisy latent zt by the loss constraints of LDM:

LLDM = EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t,y)∥22

]
, (2)

where ϵθ represents the denoising model and y is the con-
ditional embedding to control the content of generation. In
our task, the feature embeddings derived from the reference
garment image should serve as the condition to generate
identity-preserved and cloth-changed try-on results.

3.2. Existing Virtual Try-on Paradigms.
Given a source person video and a reference garment image,
our target is to fluently transfer the garment to a desirable
try-on area in the source video, thus synthesizing a natural
and coherent try-on video. Current virtual try-on mainly
includes two implementation paradigms: 1) Mask-based
paradigm [7, 15, 27, 30, 47] and 2) Mask-free paradigm
[16, 23, 28, 39, 57]. The former considers the virtual try-
on process as a mask-inpainting task, which leverages the
pre-acquired agnostic mask to determine the try-on area.
However, when dealing with more complex realistic person
videos, these pre-acquired agnostic masks not only destroy



the original spatial information of person actions and pos-
tures, but also lead to the temporal inconsistency of the try-
on area, which has a high risk of generating conflicting and
disjointed try-on videos. The latter is constructed by learn-
ing from paired training data which is generated by the pre-
trained mask-based model, avoiding the destruction of es-
sential spatial-temporal information in original person data.
However, due to the lack of mask guidance, it is more diffi-
cult for the mask-free model to identify the accurate try-on
area in each frame of the video, leading to inconsistencies
in the try-on area of the generated videos.

To alleviate issues that brought by above two paradigms,
it is worth considering the other explicit guidance to simul-
taneously achieve 1) guidance on the garment try-on area,
2) preservation of video spatial-temporal information and
3) coherence of generated video virtual try-on results.

3.3. Point-Enhanced Mask-Free paradigm
Overview. In this work, we propose a new point-enhanced
mask-free paradigm to conduct the video virtual try-on task.
Specifically, we first exploit a pre-trained mask-based try-
on model to construct paired pseudo-person training sam-
ples, thus learning a mask-free virtual try-on model. Then,
to further boost the try-on performance, we leverage the pre-
acquired sparse frame-cloth and frame-frame point align-
ments and integrate a novel Point-Enhanced Transformer
(PET) into the mask-free model. In PET module, the de-
signed Point-enhanced Spatial Attention (PSA) and Point-
enhanced Temporal Attention (PTA) perform explicit fea-
ture alignments of garment image and video frames, as well
as alignments between video frames, respectively, thereby
greatly enhancing the garment transfer ability and temporal
coherence on more complex realistic human videos. The
rest of this section will introduce our proposed method in
detail. The pipeline of our PEMF-VTO and PET is shown
in Fig. 2. For the pre-trained mask-based model, we adopt
the open-sourced video virtual try-on method ViViD [15].

3.3.1. Pseudo-Person Data Preparation
Given a person video {x}T1 and a garment image g, we
should first obtain the cloth-agnostic video {a}T1 , agnos-
tic mask sequence {m}T1 and human pose {p}T1 of {x}T1 .
Following [15], the {a}T1 and {m}T1 are extracted through
the human parsing model SCHP [2, 32]. The pose detec-
tion model DensePose [19] is employed to acquire the pose
information {p}T1 . Besides, the garment mask mg of g is
segmented by semantic segment model SAM [31]. After
acquiring above inputs, we leverage the pre-trained mask-
based model to perform the virtual try-on operation on the
publicly available image and video virtual try-on datasets
with randomly selected same-type clothes. Then, following
[39], the large-scale paired training data is applied to train a
powerful mask-free video virtual try-on model.
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Figure 3. The pipeline of the construction for point alignments
between video frames and garment images.

3.3.2. Point-Enhanced Transformer

Motivated by recent studies[4, 35, 36, 42], we choose flex-
ible and powerful matching point pairs to enhance both
garment transfer accuracy and video coherence. Specif-
ically, we first acquire the sparse frame-cloth and frame-
frame point alignments through the diffusion-based match-
ing model DIFT and point tracking model TAP-Net. Then,
as shown inFig. 2, a Point-Enhanced Transformer (PET),
which adds the Point-enhanced Spatial Attention (PSA) and
Point-enhanced Temporal Attention (PTA) compared to the
transformer layer of denoising U-Net D in baseline model,
is designed to fully leverage the guidance provided by these
point alignments.
Point Sampling and Alignment. The pipeline of our Point
Sampling and Alignment (Point SA) is shown in Fig. 3.
In the training stage, we first randomly select a frame xigt
from the realistic ground truth video {xgt}T1 . Then M
sparse points are randomly sampled from the agnostic mask
(try-on area) of xi

gt. In this work, the number of selected
points M ⩽ K, where K denotes the maximum number
of matching correspondences. After that, DIFT will cal-
culate the semantic-aware frame-cloth point alignments of
these sparse points from the garment image g. Finally, we
exploit the point tracking model TAP-Net to acquire the
frame-frame correspondences based on the select points in
xigt. In the inference stage, after selecting a frame xi from
the source video {x}T1 , users can mark the matching points
of xi and g to achieve a spatially controllable and tempo-
rally smooth virtual try-on process.

After acquiring the point alignments, we construct two
0 − 1 binary masks {cx}T1 and cg to respectively represent
the positions of frame points in {xgt}T1 and garment points
in g. The values at the selected point positions on {cx}T1
and cg are set to 1. A max pooling operation MaxPool
is then applied to obtain the masks in lower resolutions,
which align with the denoising U-Net D. Besides, a 3 × 3
channel-wise convolution is applied to {cx}T1 and cg to ex-
pand the receptive field of matching points, thus obtaining
a soft alignment mask mc

x.
Point-enhanced Spatial Attention. Referring to the pow-
erful Diffusion Transformer (DiT) [40], in Fig. 4 (a), we
design our point-enhanced spatial attention (PSA) to pro-
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Figure 4. Point-enhanced Spatial Attention (PSA) and Point-
enhanced Temporal (PTA) Attention modules.

vide explicit guidance of the try-on area without destroying
any spatial information on human movements and postures.
Specifically, the input of j-th PET layer {dj}T1 is employed
as the query Qx ∈ RT×N×C of PSA, where N is the pixel
number of dj and C is the number of latent channel. Then,
based on the point position representations {cx}T1 and cg ,
we acquire the sparse frame-level point latents {dc

j}T1 and
garment point latents rcj as the key Kx

c ∈ R1×M×C and
value V g

c ∈ RT×M×C of PSA. Before entering the PSA,
following [40], we exploit the timestep embedding ft to
regress the dimension-wise scale parameters γ1, γ2 and shift
parametersβ1 and β2 of query {dj}T1 and the dimension-
wise scale parameters α1 and α2 of residual connections by
MLP layers. The formula of PSA is given as:

Attn = softmax((γ1 · LN(Qx) + β1) ·Kx
c +W c

x )

Qx = Qx + α1 · Attn · V g
c ,

(3)

where the Wc
x ∈ RT×N×M is a point-wise attention bias to

adaptively adjust the similarities between {dj}T1 and rcj in
the try-on area. The Wc

x = mc
x · FFN(Cat(Kx

c , V
g
c , ft)) as

Fig. 4 (c) shown. Besides, to further enhance the control-
lability of the try-on area, the soft alignment mask mc

x ex-
plicitly constrains the updated residual to only work in the
surrounding area of point pairs by the following formula:

Qx = Qx +mc
x · α2 · FFN(γ2 · LN(Qx) + β2) (4)

Point-enhanced Temporal Attention. In [20, 27], it em-
ployed a temporal attention module to ensure the coher-
ence of the generated video. However, this method assumes
that the pixels between different frames with the same co-
ordinates are matching points, which is inexact or even
wrong, especially for human videos with complex actions
or movements. To this end, as shown in Fig. 4 (b), we
leverage the pre-acquired frame-frame alignments {cx}T1 to

achieve a more reasonable point-enhanced temporal atten-
tion (PTA) to further improve the coherence of the try-on
video. Concretely, we employ the sparse frame-level point
latents {dc

j}T1 as the query Qx
c of the PTA, while utilizing

the sparse frame-level point latents {dc
j}T1 in conjunction

with garment point latents rcj as the key Kx
c and value V x

c .
Then, the multi-head attention is employed to Qx

c, Kx
c and

V x
c to enhance the consistency between frames of the sur-

rounding area of these matching points {cx}T1 , thus promot-
ing the overall video smoothness. The formula is given as:

Qx
c = Qx

c + FFN(LN(Softmax(LN(Qx
c) ·Kx

c) · V x
c )) (5)

Remark. The implementation of PEMF-VTO is mainly
motivated by the deficiencies of existing virtual try-on
paradigms in 3.2, which can be clearly illustrated by Fig. 1.
From Fig. 1, we observe that the mask-based method can
not restore the crucial spatial-temporal details from the ag-
nostic mask, and the mask-free method struggles to accu-
rately perceive the try-on regions, especially for realistic
in-the-wild human videos. To this end, it is natural and
intuitive to leverage more flexible and reliable point align-
ments [4, 11, 44] to guide the virtual try-on model, thereby
obtaining more reasonable and coherent video virtual try-
on results. Specifically, our designed PSA explicitly en-
hances the precise garment transfer to the try-on area with
the cross-attention operation between sparse frame-cloth
point pairs. Besides, the PTA leverages inter-frame match-
ing point pairs to conduct a enhanced temporal attention,
thus achieving superior coherence of the try-on video. The
detailed ablation experiments in 4.4 will show the effective-
ness of our proposed PET module.

3.4. Training and Inference
Training scheme. The training scheme of PEMF-VTO
comprises three stages: (1) Stage 1: the denoising U-Net
D is initialized as a 2D inpainting model, and only a sin-
gle frame of pseudo-person data is taken as training data,
which enables the model to perceive and transfer the refer-
ence garment to a reasonable try-on area. The parameters of
P , R and D are updated in this stage. (2) Stage 2: we ini-
tialize the temporal attention module with the parameters in
[20] and exploit both image and video data to only finetune
it, thus enhancing the temporal coherence of generated try-
on results. (3) Stage 3: since most of the training samples
have been well learned through the first and second stages,
we first leverage the mask-free model of the second stage to
construct hard-paired pseudo-person training samples with
lower generation performance (i.e. SSIM < 0.75). Then, to
ensure the PSA and PTA can really promote the temporal
consistent and controllable garment transfer, we only train
the PSA module and the PTA module with these hard train-
ing samples. The learning objectives of the three training
stages are the same LDM loss in Eq. (2).



Method
Unpaired Paired

VVT ViViD TikTok VVT ViViD

VFIDI↓ VFIDR↓ VFIDI↓ VFIDR↓ VFIDI↓ VFIDR↓ SSIM↑ LPIPS↓ VFIDI↓ SSIM↑ LPIPS↓ VFIDI↓
PF-AFN∗ [16] 5.12 0.125 43.22 1.87 43.38 7.16 0.856 0.233 7.33 0.776 0.183 39.28
Flow-Style∗ [23] 4.79 0.097 41.93 1.69 42.28 11.38 0.854 0.241 7.64 0.781 0.169 38.64
StableVITON∗ [30] - - 36.90 0.91 - - 0.902 0.078 3.54 0.802 0.134 34.24
IDM-VTON∗ [7] 2.77 0.027 25.50 0.72 38.62 5.97 0.896 0.079 3.91 0.823 0.116 20.08
CatVTON∗ [8] 2.49 0.016 22.65 1.14 39.67 6.53 0.899 0.082 3.75 0.834 0.089 17.73
ViViD† [15] 3.99 0.041 21.80 0.82 46.73 6.94 0.822 0.107 3.78 0.803 0.122 17.29
CatV2TON† [9] 1.90 0.014 19.51 0.53 43.62 6.18 0.900 0.039 1.78 0.873 0.064 13.60
PEMF-VTO 0.95 0.007 16.67 0.34 31.62 2.05 0.915 0.035 0.87 0.911 0.040 7.54

Table 1. Quantitative results on the VVT, ViViD and TikTok datasets. The best are marked in bold. The ∗ and † respectively denote image
and video virtual try-on methods.

Method
VITON-HD DressCode

SSIM↑ LPIPS↓ FID↓ SSIM↑ LPIPS↓ FID↓

PF-AFN∗ [16] 0.857 0.142 17.28 0.878 0.102 20.51
Flow-Style∗ [23] 0.860 0.133 16.84 0.882 0.094 19.24
LaDI-VTON∗ [34] 0.871 0.094 13.01 0.915 0.062 16.71
StableVITON∗ [30] 0.888 0.073 - - - -
IDM-VTON∗ [7] 0.870 0.102 6.29 0.920 0.062 8.64
GPD-VVTO† [47] 0.891 0.070 8.57 0.924 0.045 4.18
ViViD† [15] 0.881 0.089 8.67 0.907 0.070 8.28
PEMF-VTO 0.894 0.062 6.86 0.927 0.034 3.41

Table 2. Quantitative results on the VITON-HD and DressCode
datasets. The best are marked in bold. The ∗ and † respectively
denote image and video virtual try-on methods.

Inference scheme. In the inference stage, users can manu-
ally click on the matching point pairs between a randomly
selected single video frame and reference garment image,
thereby acquiring a more coherent and natural generation,
especially for the video with complex actions and postures.

4. Experiments

4.1. Dataset and Experimental Setting
Datasets. Following our baseline backbone [15], we
train our model on two image datasets, VITON-HD [6]
and DressCode [33], and one video dataset, ViViD [15].
For the video virtual try-on, following CatV2TON [9], the
VVT [12] dataset and a testset of ViViD [15] are selected as
the evaluation datasets. Besides, referring to [24], a more
realistic and challenging TikTok [29] dataset is chosen to
further illustrate the superiority and generalization of our
method. For the image virtual try-on, comparative experi-
ments are conducted on the test sets of VITON-HD, Dress-
Code and StreetVTON [10] datasets. All datasets are open-
sourced for wide research purposes. The detailed introduc-
tion of all datasets is shown in the supplementary materials.
Metrics. Following previous methods [9, 15, 47], both
frame-level metrics LPIPS [55], SSIM [48], FID [25] and
video-level metric VFID [45] metric with I3D [3] and
ResNext are adopted for comprehensive evaluation.
Implementation Details. We initialize the denoising U-
Net D and reference U-Net R with the weights from Stable

Diffusion-1.5. The temporal module is initialized with the
weights from the motion module of [20], and the CLIP
image encoder is the same as the baseline model [15]. Dur-
ing training, all data is resized to a uniform resolution of
512 × 512. Experiments are conducted on 8 Nvidia H100
GPUs with a learning rate of 5e-5. The numbers of training
iterations in the three stages are 40000, 40000 and 20000
respectively. Since images can be considered as a single
frame of videos, both image and video data are utilized dur-
ing the three training stages, with the proportions of video
data being 0.3, 0.9 and 0.5 for each stage respectively. In
each iteration, only one form of training data is chosen, ei-
ther video or image. With the selection of image datasets,
training is conducted with a batch size of 128. In contrast,
the selection of video datasets involves training the model
with 16-frame video sequences and a batch size of 8. To
enable a fair comparison with mask-based methods, the ag-
nostic mask can be treated as a specific garment to partic-
ipate in the training of our PEMF-VTO, accompanied by
20% ratios. The maximum number of points K is set to 16.

4.2. Quantitative Results
Video Virtual Try-on. To achieve a fair and comprehensive
comparison with previous methods, we evaluate our method
on two test settings for the video virtual try-on task. The
unpaired setting means that the virtual try-on model should
substitute the garment of the input source person video with
a different garment. The paired setting is defined as recon-
structing the person video by providing an agnostic person
video and its original garment. In Tab. 1, the two open-
sourced video try-on methods ViViD [15] and CatV2TON
[9] are chosen as the video-based comparative methods. Be-
sides, many relatively high-performing image-based virtual
try-on methods are also exploited to enrich the experimen-
tal comparisons. As Tab. 1 shown, our PEMF-VTO signif-
icantly outperforms all image-based and video-based meth-
ods in all metrics of two different settings. The superior
performance on two simple model video datasets VVT and
ViViD and one realistic in-the-wild dataset TikTok further
demonstrates the generalization ability of our method.
Image Virtual Try-on. To further illustrate the effective-
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Figure 5. Qualitative comparison on StreetVTON, ViViD and TikTok datasets. Best viewed with Acrobat Reader. Click the images to play
the video clips.

ness and robustness of our proposed method, for the im-
age virtual try-on task, we compare our method with both
image-based and video-based virtual try-on methods in the
paired setting. As shown in Tab. 2, although our approach is
mainly designed for video virtual try-on, it outperforms two
video-based try-on methods across all metrics and achieves
comparable performance with SOTA image-based virtual
try-on methods, This is primarily due to the lower quality of
video frames used during the training stage of our PEMF-
VTO, which negatively impacts the model’s image gener-
ation capability. These experimental results show that our
method can also successfully generalize to the image virtual
try-on task to show competitive performance.

4.3. Qualitative Results
As shown in Fig. 5, we show the visualization comparisons
of our method with the SOTA image-based method CatV-
TON [8] and two video-based method CatV2TON [9] and
ViViD [15]. Specifically, our generated results achieve sig-
nificant visual fidelity to the reference garment in the spatial
dimension and content consistency in the temporal dimen-
sion in all datasets. It is worth noting that our model is only
trained on simple model images and videos and obtains su-
perior try-on results on more challenging StreetVTON and
TikTok datasets, which demonstrates the effectiveness and
generalization of our method.

Besides, in Fig. 1 and Fig. 6 (a), it is clear that ex-
isting mask-based and mask-free virtual try-on paradigms
have obvious deficiencies, especially for realistic video data
with complex scene changes and body movements. Con-
cretely, the mask-based method can not recover the impor-
tant spatial-temporal information due to the inaccurate ag-
nostic mask. The mask-free method may get confused about
how to determine a reasonable and coherent try-on area.

Differently, our PEMF-VTO can simultaneously achieve
the precise determination of try-on area and the video co-
herence without the guidance of the agnostic mask. Fur-
thermore, as Fig. 6 (b) shown, our method has the potential
to conduct a more flexible and controllable try-on process
through the explicit guidance of the point alignments. We
provide all video results in the supplementary materials.

4.4. Ablation Studies
In this section, we design different variants to perform a
detailed analysis of our PET module. To increase the credi-
bility, in Tab. 3, we also synthesized 430 pseudo video pairs
with the points alignments from the ViViD testing dataset.
Thus, the LPIPS and SSIM metrics can be applied to further
evaluate the generation quality.
Point-Enhanced Transformer. As shown in Tab. 3, com-
pared to the baseline (Mask-Free variant), our PEMF-VTO
obtains obvious performance improvement to acquire more
natural and coherent try-on results.
Point-Enhanced Spatial Attention. Based on the frame-
cloth point alignments, the PSA is designed to provide ex-
plicit guidance to transfer the garment into the desirable try-
on area, which significantly improves the performance of
our baseline model as Tab. 3 shown. Besides, in the upper
part of Tab. 3, we analyze the effectiveness of soft align-
ment mask mc

x and point-wise attention bias Wc
x. Our PSA

obtains performance decrease when removing the two de-
signs, which illustrates the reasonability of PSA.
Point-Enhanced Temporal Attention. The complex hu-
man actions at the temporal level always lead to the discon-
tinuity of the try-on video. To this end, we design the PTA
to enhance the coherence of the try-on area between differ-
ent frames. As Tab. 3 shown, the PTA brings clear improve-
ments to the baseline model. Besides, the performance of
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Figure 6. Qualitative results for the (a) Ablation visual results
about PET and (b) Controllability of our method. The top row
and bottom row of each subfigure are respectively from StreetV-
TON and ViViD datasets. Best viewed with Acrobat Reader. Click
the images to play the video clips.
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Figure 7. (a) Ablation studies for different K and (b) Robustness
Analysis for different error rates of point alignments. We conduct
the experiments on the TikTok dataset.

PTA decreases when only selecting the frame-level point
latents {dc

j}T1 (i.e. w/o rcj) as the key Kx
c and value V x

c of
PTA, which further verifies the effectiveness of our PTA.
Different maximum number of points. In Fig. 7 (a), we
investigate the effects of the maximum number of points
K on the performance of the TikTok dataset. As K in-
creases, the FID and VFID metrics first improve and then
stabilize. It can be attributed to the repetition of more sam-
pling points. Therefore, we choose K = 16 in this paper.
Robustness Analysis of PET. The pre-acquired point align-
ments have the probability of error which may lead to a
negative impact on the try-on performance. Therefore, to
verify the robustness of our PET, we first randomly per-
turb a specific proportion of the pre-acquired point align-
ments to obtain the point pair guidance with different error

Variants
Realistic Pseudo

ViViD TikTok ViViD

VFIDI↓ VFIDR↓ VFIDI↓ VFIDR↓ SSIM↑ LPIPS↓
ViViD 21.80 0.82 46.73 6.94 0.840 0.114
Mask-Free 19.32 0.57 38.96 4.38 0.857 0.083
PEMF-VTO 16.67 0.34 31.62 2.05 0.867 0.073

base + PSA 17.86 0.42 33.69 2.68 0.863 0.075
w/o mc

x 18.44 0.47 34.72 3.14 0.860 0.078
w/o Wc

x 18.23 0.45 34.17 2.91 0.862 0.076

base + PTA 18.03 0.44 34.78 2.91 0.864 0.076
w/o rcj 18.52 0.48 35.61 3.17 0.861 0.079

Table 3. Ablation studies for our PSA and PTA modules on realis-
tic ViViD and TikTok datasets and pseudo ViViD dataset.

rates. In Fig. 7 (b), if the error rate is low (i.e. < 20%), our
method shows impressive robustness to achieve similar im-
provement with all correct variants. Besides, even though
the error rate is nearly 70%, the VFIDR of our PEMF-VTO
on the TikTok dataset also outperforms the base mask-free
model, thereby significantly reflecting the reasonability and
robustness of our proposed PET module.

5. Limitation

Since the quality and diversity of the person-pseudo training
data is limited, our method is still insufficient in maintain-
ing and transferring garment details, such as the bag strap
on the shoulder of the person in the bottom of Fig. 6 (a). Be-
sides, the ability to control and edit the try-on area should
be further improved. In the future, we will construct more
diverse training data to continually train our model, thereby
promoting the continuous upgrading and evolution of our
video virtual try-on model to achieve better performance for
more realistic and difficult try-on data.

6. Conclusion

To alleviate the deficiencies of existing virtual try-on
paradigms and synthesize more realistic and coherent
video try-on results, in this work, we propose a novel
Point-Enhanced Mask-Free Video Virtual Try-On method
(PEMF-VTO). Concretely, we first leverage the pre-trained
try-on model to construct paired pseudo-person training
samples to learn a mask-free try-on model. Then, based
on the pre-acquired sparse alignments, the Point-enhance
Spatial Attention (PSA) and Point-enhance Temporal At-
tention (PTA) are designed to improve the garment trans-
fer ability and coherence of more complex realistic human
video. Our PEMF-VTO can simultaneously achieve 1) the
accurate transfer of reference garment 2) the preservation
of non-try-on areas and 3) the continuity of generated video
frames. Extensive quantitative and qualitative experimental
results clearly show the effectiveness of our method.
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